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Introduction

	 Cardiovascular disease (CVD) remains the leading cause of death worldwide, with coronary ischemic heart disease 
accounting for 80% of deaths from CVD [1-3]. While heart-healthy lifestyle changes remain essential to reducing one’s life-
time risk of CVD, prevention and treatment options have otherwise relied on control of blood pressure and blood sugar and 
cholesterol levels. Interventional techniques have relied on percutaneous coronary intervention and coronary artery bypass 
grafting [2]. With the total treatment costs of cardiovascular disease rising and expected to reach $1.1 trillion in 2035 in the 
United States alone [4], heart failure is in need of new therapies to prevent, as well as reverse, cardiac arterial pathology and 
enhance cardiovascular regeneration. Herein is presented a concise review of the utility of vascular endothelial growth factor 
(VEGF) in angiogenesis and rationale for the use of VEGF-eluting stem cells in the treatment of ischemic disease.
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VEGF, Cancer, and VEGF Blockade
	
	 The field of angiogenesis has become a target of fo-
cused research for both therapeutic angiogenesis as well as 
therapeutic anti-angiogenesis. As no metabolically active tis-
sue is but a few hundred micrometers from a capillary, all tis-
sues rely on the continual flow of oxygen and micro-nutrients 
to survive. The field of angiogenesis in the printed literature 
may be followed back to the Scottish anatomist and surgeon 
John Hunter. He was the first to provide scientific insights to 
the fields of angiogenesis and blood flow in his Treatise in 1794; 
his remarks generally addressed the importance of balance be-
tween vascularity and metabolism [5]. The modern era of basic 
and clinical research related to angiogenesis was anchored by 
Dr. Judah Folkman in his landmark paper discussing tumor 
angiogenesis in 1971 [6]. A direct correlation was then estab-
lished between tumor vascular density and extent of tumor 
burden, stage, and prognosis [7]. However, it was not until the 
next decade that the essential protein needed for angiogenesis 
was discovered: VEGF. VEGF was discovered by Senger and 
Dvorak in 1983, though they termed it the “vascular perme-
ability factor.” [8] Later that same decade (1989), VEGF was 
independently identified by Ferrara and Henzel as it was iso-
lated from the conditioned media of bovine pituitary cells [9]. 
Slightly 30 years past the release of Dr. Folkman’s seminal pa-
per, and 25 years past Senger and Dvorak’s discovery of VEGF, 
in 2004 the Food & Drug Administration approved the first an-
ti-angiogenic medication, bevacizumab (Avastin®; Genentech, 
San Francisco, CA), for human use in the treatment of cancer 
[10]. Bevacizumab is a monoclonal antibody which prevents 
VEGF binding, which then prevents growth and maintenance 
of tumor vessels. This medication has significantly added to 
our chemotherapeutic armamentarium for the treatment of 
several cancers. 

Role of VEGF in angiogenesis
	
	 As VEGF is instrumental in promoting tumor pro-
gression, it is also critical in normal tissue and organ devel-
opment. The maintenance and production of vessels rely on 
several growth factors and cytokines; VEGF is one of the most 
critical and well-studied angiogenic growth factors [11]. VEGF 
is involved in several angiogenic functions, to include endo-
thelial cell migration, mitogenesis, vascular sprouting, and 
vascular tube formation [12,13]. Several isoforms of VEGF are 
endogenously active; VEGF factor A (VEGF-A) is the most ac-
tive isoform and is essential for mammalian development and 

function [14,15]. As the family of VEGF comprise a family of 
both pro- and anti-angiogenic isoforms and related proteins 
[14,16-19] the delicate balance between these competing pep-
tides presumably maintains vascular homeostasis in vivo while 
significant increases in anti-angiogenic VEGF-A isoforms, 
such as VEGF-A165b, reflect impaired vascularization [18]. 

VEGF protein therapy
	
	 Cytokine therapies, to include fibroblast growth fac-
tor, hepatocyte growth factor, stromal cell-derived factor-1α, 
and recombinant human VEGF, have shown promise in treat-
ing ischemic diseases [20]. Several phase I trials using intra-
coronary and intravenous infusions of VEGF in patients with 
the coronary disease showed favorable trends [21-23]. How-
ever, clinical trials of VEGF gene therapy as well as trials us-
ing high dose VEGF therapy, in patients with coronary artery 
disease or peripheral artery disease, have not demonstrated 
statistical clinical benefit [22-27]. In the placebo-controlled 
double-blinded phase II VIVA trial, VEGF failed to show sus-
tainable improvements over placebo in anginal frequency and 
treadmill test time at four months [23]. Reasons for such failure 
may lay in the poor stability and cell permeability of exogenous 
VEGF. Administered peripherally, VEGF demonstrates a short 
in vivo half-life of about 30 minutes while hypotensive side ef-
fects also limit the utility of the infused recombinant protein to 
achieve angiogenesis [21,23].

	 Several manufactured VEGF protein delivery vehicles 
have been developed to improve both targeting damaged tis-
sues and delivery of VEGF. Examples include scaffolds such as 
cross-linked heparin, hydrogels to nano- and micro-particles 
of PLGA and collagen, engineered polymers and microspheres 
[28-30]. Such vehicles may prolong the half-life of payload 
growth factors and related cytokines [31]. 

Cell-based therapies

	 Cell-based therapies have shown particular promise 
in several difficult-to-treat conditions and diseases, including 
neurological, autoimmune, and gastrointestinal targets [32-
34]. Similarly, cell-based therapy is a promising and emerging 
new option for promoting angiogenesis and treating ischemic 
diseases [35-39]. Cell-based therapeutic approaches have in-
volved several classes of putative stem cells, ranging from bone 
marrow-derived mononuclear cells, endothelial progenitor 
cells, mesenchymal stem cells (MSCs), and pluripotent stem 
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cells [40]. CD-34 positive bone marrow-derived stem cells, in 
particular, have been well characterized and have been used 
clinically to rebuild the hematopoietic system after chemother-
apy; such utility in the treatment of ischemic heart disease is 
promising [41,42].

Mesenchymal stem cell-based therapies

	 MSCs exist in several tissues in an undifferentiated 
state with the ability to self-renew and differentiate along sev-
eral mesodermal lineages [43-50]. Human MSCs derived from 
adipose, so-called adipose-derived stem/stromal cells (ASCs), 
are easily isolated from lipoaspirate and secrete a wide array 
of proangiogenic cytokines and differentiate into multilineage 
progenitor cells [16,47,51-53]. Since angiogenesis and organ-
ogenesis are normally coupled, it is possible that human ad-
ipose-derived progenitor cells (APCs) could modulate levels 
of vascular endothelial growth factor (VEGF) in a lineage-de-
pendent manner. Animal studies have shown that ASCs have 
the potential to differentiate in vivo into endothelial cells and 
cardiomyocytes [54-56]. MSCs have also shown to be im-
mune-evasive and, as such, may be both effective in vivo after 
autogeneicor allogeneic transplantation [57]. Additionally, cul-
ture-expanded MSCs have been shown to decrease inflamma-
tion and T-cell proliferative responses because of their reduced 
expression of surface histocompatibility antigens [58].

	 While the use and potential benefit of MSCs in car-
diovascular disease have been widely published, such benefit 
seems unlikely solely from the differentiation of these cells 
to cardiomyocytes. MSC-derived cardiomyocytes have been 
shown to fail permanent engraftment and become nonvia-
ble within a few hours after administration [59,60]. However, 
APCs may elaborate greater quantities of paracrine and auto-
crine cytokines comparative to MSCs in their undifferentiated 
state [59-62].Therefore, modification of MSCs to APCs before 
delivery could promote expression of VEGF-A, favorably aug-
menting the capacity for cardiac repair.

VEGF-eluting adult progenitor cell therapies

	 MSCs differentiate down both mesodermal and en-
dothelial lineages while participating in angiogenesis by se-
creting angiogenic paracrine factors, including VEGF, basic 
fibroblast growth factor (bFGF), and platelet-derived growth 
factor (PDGF) [63-67]. Such the dichotomy is well revealed in 
an embryologic study of vessel formation. A delicate balance 
lies between differentiated mesodermal embryonic stem cells 

and endodermal paracrine signaling. Angioblasts, as derived 
from the splanchnic mesoderm, give rise to capillaries. The an-
gioblasts assemble themselves into a primitive vascular plexus 
under the influence of VEGF [68]. VEGF-A binds to Fetal Liver 
Kinase-1 (FLK-1), which activates several intracellular trans-
duction pathways for vessel formation [68]. It has been shown 
that in mice lacking FLK-1, the mice develop angioblasts but 
not vessels; as such, VEGF signaling is critical to the develop-
ment of vessels [68]. High and low levels of VEGF also lead to 
differing second messenger expression, determining the devel-
opment of arteries (high VEGF concentration) and veins (low-
er VEGF concentration) [68,69].
	
	 Proangiogenic signal transduction and feedback loops 
between developing and renewing stems cells and their cyto-
kines continue beyond the embryonic period and into undiffer-
entiated adult stem cells, [12]. ASCs have been shown to pro-
mote angiogenesis by producing VEGF, human growth factor 
(HGF), and tissue growth factor-β. VEGF-A has been shown to 
be a key regulator of perichondrial angiogenesis and osteoblast 
differentiation at the early stages of bone development [70, 71]. 
Additionally, autocrine, or intracellular, VEGF has been shown 
to play a key role in the differentiation of MSCs, not only by 
modulating cell surface receptors but by also linking to protein 
lamin A on the nuclear envelope [72].

	 Therapeutically, ASCs have been shown to improve 
blood flow in a mouse model of hindlimb ischemia by secret-
ing growth factors, including VEGF and HGF [73]. Laboratory 
studies and limited clinical trials have shown ASC feasibility 
and safety [74] and have revealed potential mechanisms of ac-
tion of stem cell therapy in ischemic diseases, such as stroke and 
ischemic cardiomyopathy [74-77]. However, even with efficacy 
in animal studies, functional human benefits after transplanta-
tion of stem cells remain equivocal in patients with stroke [75] 
and heart failure [59, 60]. Microvesicles and exosomes present 
a promising outlook for the treatment of ischemic diseases as 
well. The proangiogenic potential of ASC-released microvesi-
cles has been shown and linked to associated micro-RNA-31 in 
the microvesicles [78].

	 By classification, stem cells undergo a finite period of 
multiplication as progenitor cells before completing differenti-
ation into functional cell types [79]. Along the pathway to final 
differentiation, progenitor cells elicit and respond to cytokine 
signals that encourage cell migration and extracellular matrix 
invasion. Such responses have been shown in vitro for endo-
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thelial progenitor cells [80]. Relatedly, research for therapeutic 
angiogenesis has largely focused on the use of progenitor endo-
thelial stem cells [81,82].

	 Through in vivo cellular plasticity, progenitor cells, 
which have started down a differentiation developmental path-
way, may be able to reverse the pathway back to its native state, 
or possibly to another differentiation lineage [83]. As such, de-
pending on epigenetic cues, it may be possible for a differenti-
ating osteoblastic progenitor cell to de-differentiate to a basal 
stem state, then down an endothelial lineage. Osteoblastic pro-
genitor cells, as they are heavily involved in VEGF stimulated 
responses in embryonic and adult perichondrial angiogenesis 
and bone formation may be a logical VEGF vehicle for the treat-
ment of ischemic disease. Their benefit may lie in the possible 
sustained paracrine elaboration of VEGF after engraftment, as 
well as possible dedifferentiation to cardiomyocyte lineage and/
or endothelial lineage. Additionally, progenitor cell homing, 
whereby the cells are attracted to the chemoattractant gradient 
in response to ischemic tissue injury, occurs in all tissues for 
the replacement of cells [84-86]. Peripherally infused osteogen-
ic progenitor cells may be able to home to the affected ischemic 
tissue for therapy. As such, the progenitor cell may hold several 
tools in its therapeutic toolbox, beyond our traditional under-
standing of multi-differentiation and cytokine elaboration.

Conclusions
	
	 VEGF remains a critical constituent for angiogenesis 
and organ development. Similarly, VEGF therapy alone has 
shown encouraging trends in the clinical treatment of ischemic 
disease. Modulating VEGF delivery with regenerative cell-
based vehicles, such as with osteogenic progenitor cells, may 
improve clinical efficacy in the treatment of ischemic disease.
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