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Weight knowledge is important in many fields in decision science. For example, in an artificial neural network (ANN), knowledge resides 
in the weights on links between neural neurons, based on which output is obtained from given inputs. Although a meaningful output of 
an ANN is of great use, implications of individual weights are often difficult to decipher. In the context of qualitative decision making, 
linguistic variables often express information that is about ordinal ranking rather than an exact quantity, and therefore the challenge lies 
in how to determine the weights conforming to the reality and making sense of the decision. In this work, we discriminate two kinds of 
weights, where one kind is related to the importance of attributes, and the other is related to aggregation characteristics. We propose a 
weight estimation method, in which these two kinds of weights are calculated simultaneously from a set of known cases that provide addi-
tional aggregation information. Using a simulated annealing algorithm, weights satisfying certain conditions can be obtained, and results 
for new cases can be aggregated thereafter. We find that the weights developed in our method are more explanatory than other approaches, 
such as the artificial neural network.
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Introduction

Problem Description

Lowaoperators and Aggregation Weights

	 Aggregation of criteria functions to form an overall de-
cision function is important in various fields in decision science. 
In the simplest cases such as when both outputs of the criterion 
functions and the overall decision function are numerical val-
ues, the knowledge lies in determining the criterion weights, by 
which one can get the overall grade by calculating a weighted 
average of all criteria grades. In more complex situations, the 
output can no longer be represented as a linear function of in-
puts. For example, when an artificial neural network (ANN) is 
trained by a set of instances with known results, the knowledge 
is embodied in weights on links between neural neurons. [14] 
However, the benefit of an ANN is achieved at a cost, which is the 
inherent inability to explain, in a comprehensible form, the pro-
cess through which a decision or output is given. [1] To address 
this issue, some complementary techniques such as extracting 
rules from ANN have been studied (see [1, 8] for example).

	 Uncertainties in inputs and outputs also bring com-
plexity. [21, 22] The Fuzzy Set theory, proposed and developed 
by Zadeh [24] is often used to deal with the situation where the 
assessment information is stated in linguistic terms. Membership 
functions can then be defined to denote the degree of truthfulness 
of the proposition. Evidence theory, of Shafer [17], is also useful 
in aggregating information when uncertainty is attributable to 
ignorance, instead of fuzziness [5]. Because of the difficulties in 
defining consensus membership function and approximation of 
the ultimate irregular fuzzy set, a method that directly operates 
on linguistic variables has been proposed in [9-11]. The method 
is based on the concepts of ordered weighted averaging (OWA) 
operators developed by Yager [20] and convex combination of lin-
guistic labels defined by Degani and Bortolan. [3]

	 Aggregating linguistic information has large potential 
in practice. [15] For example, when assessing the attributes of 
cars such as acceleration, braking, handling, ride quality and 
powertrain, customers often use linguistic terms, or linguis-
tic variables, to describe their opinions. Therefore, how these 
individual attribute assessments can lead to an overall ranking 
becomes a complicated problem. Although linguistic ordered 
weighted averaging (LOWA) operator [9] can provide an aggre-
gation mechanism, it assumes that inputs are equally important. 
Therefore, it becomes difficult to develop the weights according-
ly, which implicitly determine the degree of “anding” and “oring” 
in the aggregation.

	 In this work, we develop a method that extends the 
LOWA operation by removing the “equal importance” assump-

	 This paper is structured as follows. In Section 2, the 
problem is briefly reviewed. The LOWA operator and the weights 
in different means are discussed in Section 3. In Section 4, we pro-
pose an operator allowing for two kinds of weights, and present 
how it can be used to aggregate linguistic information based on 
mining known behavior cases. Numerical examples and related 
computation are illustrated in Section 5. Finally, the conclusion 
together with some discussion are given in Section 6.

tion in the inputs. The knowledge about the aggregation mech-
anism and importance of each input variable can be calculated 
from a set of known cases with additional aggregation informa-
tion. 

	 Let A1 , A2 ,..., An be n criteria in a multi-criteria prob-
lem. X is the set of alternatives. For a proposed alternative x € X 
, Aj(x) indicates the performance of x according to Criterion Aj. 
The assessment of an alternative against other criterion or itself 
may be qualitative. Our problem is to develop a proper method to 
get the overall assessment of x from the set of {Aj (x) | j =1,...,n}.

	 A number of alternatives with known results are avail-
able, which act as a series of cases provided for case-based reason-
ing. There may also be other form of knowledge on hand such as 
comparative knowledge of two criteria’s importance, etc.

	 As Yager pointed out [20], when all criteria are equally 
important, the aggregation structure can be viewed as between 
two extremes, “anding” and “oring”. At one extreme, the overall 
result is good only if all the criteria are satisfied. Hence the output 
is the minimum of all the inputs. At the other extreme, the overall 
result is good as long as at least one of the criteria is satisfied. The 
output can then be calculated by maximizing all the inputs.

	 More generally, if the domain of each Aj is [0,1], and all 
criteria are equally important, then the aggregation process can 
be expressed by an OWA operator F with weighting vector v = 
(v1, v2, ….vn)

	 When the performance of alternatives can be assessed 
quantitatively, an ANN can be expediently trained to learn the 
aggregation process. However, people still need the knowledge on 
weight allocation in the network to help comprehend and make 
sense out of the decision.

1 2 1 1 2 2( , ,..., ) ...n n nF a a a v b v b v b= + + +
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	 If the term set has the following characteristics:

• The set is ordered: si ≥ sj if i ≥ j ;

• There is the negation operator: Neg (si) = sj such that j = T − i

	 The weights bound with attributes are more intuitive 
for assessing alternatives. Most of the information aggregation 
methodologies in literature presume the weights are assigned in 
advance, but in reality, it is not easy for the decision- maker to 
give a certain and consistent weight vector. Some improvement 
ideas include attribute weights as fuzzy numbers (e.g. [2, 24]) or 
linguistic variables (e.g. [4, 18]).

	 In our method these weights are regarded as interior 
quantitative variables implied in the aggregation results. They are 
initially unknown, but can be defined and calculated, and used to 
aggregate information thereafter.

gregation operators have been studied in [6, 7, 9-12, 16, 19, 23, 25]. In 
the following section, how the importance weight vector w of criteria 
can be integrated into the aggregation process, and how they can be 
identified from a set of cases are studied. 

	 bi is the i th largest element in the collection {a1 ,a2 ,...,an }.

where 
1

[1,0] ,  1n
i ii

V i V
=

∈ ∀ =∑

	 Vector v can determine the “andness” or “orness” of the 
aggregation. v = (1,0, … ,0) corresponds to the pure “or” operator, 
while v = (0,0, … ,1)corresponds to the pure“and” operator.

	 In many real circumstances, it is more desirable that Aj 
(x) s present a linguistic value. For example, their domain can be a 
linguistic expression set S = {si |i ∈{0,...,T}}, used to provide perfor-
mance value about alternatives according to various criteria. For 
instance, S can be the set of

	 An aggregation operator, LOWA φ  can be defined to 
compute directly from linguistic labels [10]. For the label set

	 Let the importance weight vector of criteria be w = (w1, 

w2,..., wn ): [ ] 1
0,1  ,  1n

i ii
w i w

=
∈ ∀ =∑ .

	 Considering both the aggregation weights and the at-
tributed weights, for some alternative x : ( A1 ( x), A2 ( x),..., An ( x)) 
= (a1, a 2,..., an ), an aggregation operator φ  can be defined as:

	 where ( ) ( )
1

/ ( )
n

i i i i i
i

u V W V Wσ σ
=

= ⋅ ⋅∑ , i = 1,...,n , σ	is a per-

mutation over {1,2,…,n} such that (b1, b2,..., bn ) = (aσ(1), aσ( 2),..., 

aσ( n ) ).

	 For the operator  φ v, w (we can call it LOW2A), we have 
simple properties as follows.

	 (a) If 
1 1 1  ( ,  ,..., )w
n n n

=  then φ v, w= φ

	 b) If wi = 1 for some i ∈ {1,2,...,n}  and v1 ≠ 0 for all i, then 

φ
v, w(a1, a 2,..., an ) = ai Because 1 ( )

1
i

u
σ − = , and uj = 0 with j ≠ σ-1(i), 

∀j, we have v, w(a1, a 2,..., an ) = 1 ( )
a ii

b
σ − = .

c) If wi = 0 for some i ∈ {1,2,...,n}, then φ v, w(a1, a 2,..., an ) is inde-

pendent of ai.

This is obvious from the fact that 1 ( )
1

i
u

σ − = = 0 and the definition of 

the convex combination Cm.

	 where, v and B = {b1,...,bn } are as before, 
2

/
n

h h k
k

V Vβ
=

= ∑ , h = 

2 ,...,n, and Cm is the convex combination of m labels and if m = 2 ,C2 

is defined as

	 such that k = min {T, i + v1 . (j − i )}, where b1 = sj, b2 = si.

	 If vj = 1 and vi = 0 with i ≠ j,∀i, then the convex combination 
is defined as: Cm {v1, b1, i = 1,...,m} = bj

	 Therefore, it is easy to see that how to calculate the weight-
ing vector of LOWA operator v is a basic question to be resolved.

	 On the other hand, weights in LOWA operators determine 
the structure of aggregation, so can be viewed as aggregation weights. 
If the attributes or criteria are not really of equal importance, another 
kind of weights should be taken into account. Issues of weighted ag-

Attribute Weights and Discovering By Learning

LOWA operator with determinate weights

1 2 1 2( ( )), ( ),..., ( )) ( , ,..., ),n nA x A x A x a a a=

0 1 2 3

4 5 6

{ , _ , ,
, _ , }.

s None s Very Low s Low s Medium
s High s Very High s Perfect

= = = =
= = =

2
1 1{ , , 1, 2} (1 ) ,   , , ( )i i j i k j iC V b i V S V S S for S S S j i= = ⊗ − = ∈ ≥ 

1 2{ , ,... },na a a

1 2 n
1

1 1 1

(a , a ,..., a ) . { , , 1,..., }
(1 ) { , , 2,..., }

T n
i i

n
h h

V B C V b i n
V b V C b h n

φ

β−

= = =

= ⊕ − = 

, 1 2 n(a , a ,..., a ) { ,  ,  1,..., }n
v w i iC u b i nϕ = =



J Comput Sci Software Dev 2021 | Vol 1: 101  JScholar Publishers                  

 
4

	 Assume the aggregation problem involves 4 criteria. v 
= (0.25,0.25,0.25,0.25), which implies both the “orness” and the 
“andness” of aggregation are 0.5. An alternative x has criteria as-
sessments (s0, s3, s2, s4 ).

	 If four criteria are equally important, then the aggrega-
tion result for x by ordinary LOWA operator will be φ  = s3

	 However, if the criteria weight vector is given, for in-
stance, w = (0.2,0.3,0.4,0.1), then one can calculate the composite 
weight u = (0.1,0.3,0.4,0.2), and φ  = s2. This comes from the fact 
that importance of the third largest element has been improved.

	 By means of the LOW2A φ
v, w operator defined in 4.1, 

the aggregation mechanism can be mapped to configuration of 
the weights v and w. Taking v1,..., v2, w1,..., wn as variables, accord-
ing to the cases and information given, a mathematical program-
ming can be built to estimate the weights.

	 In this section, we make use of an example to demon-
strate how the approach can be applied.

	 For a collection of alternatives, each can be assessed 
based on a set of attributes, to get an overall assessment. In group 
decision making context, information aggregation can refer to 
producing a comprehensive evaluation from a group of decision 
makers’ evaluations. In this example, we have four alternatives, 
and for each one, four linguistic assessments can be obtained 

	 As we can see, the model is formulated as a nonlinear 
mathematical programming model, which is difficult to solve to 

S. t.

	 a) Each alternative case (a1, a 2,..., an ) with known result 

Sk can be transformed into a constraint equation.

	 b) The information about the comparison of criteria im-
portance should be expressed by equation or inequality in weight 
variables.

	 c) The objective function can be maximizing or mini-
mizing the dispersion of v , or w , or both, where

φ
v, w (a1, a 2,..., an ) = Sk

from 4 experts according to their own specialties. We are inter-
ested in finding aggregation knowledge in terms of aggregation 
weights and expert weights.

	 Suppose we have a set of m alternatives, whose assess-
ments results are according to the experts and their actual perfor-
mance ranks are known. Let the alternative set be {c1, c2, c3, c4 }. 
For each alternativeci , we have its attribute linguistic evaluation 
A(ci ), and actual total performance D(ci ), as follows.

	 a) For c1 :{a11 = s1, a21 = s5, a31 = s4, a41 = s6}, actual perfor-
mance is s5.

	 b) For c2 :{a12 = s1, a22 = s3, a32 = s3, a42 = s1}, actual perfor-
mance is s3.

	 c) For c3 :{a13 = s4, a23 = s5, a33 = s3, a43 = s2}, actual perfor-
mance is s2.

	 d) For c4 :{a14 = s1, a24 = s6, a34 = s1, a44 = s0}, actual perfor-
mance is s1.

	 In addition, provided it is also known that the 3rd expert 
is more knowledgeable than the second expert.

	 Then, a mathematical programming model for mini-
mizing the sum of dispersion of  v and of  w can be described as:

Weight discovering model

Model and numerical examples

A simulated annealing solution approach

	 The LOW2A operator  φ v, w can be illustrated by a simple 
example.

Numerical Examples

( )  ln  

( )  ln  

i i
i

i i
i

dispersion W W W

dispersion V V V

= −

= −

∑

∑

(5.1)
4 4

1 1
min  ( , )  ln   ln  i i i i

i i
G v w V V W W

= =

= +∑ ∑

, 1 5 4 6 5( ,  ,  ,  )v w S S S S Sϕ =

, 1 3 3 1 3( ,  ,  ,  )v w S S S S Sϕ =

, 4 5 3 2 2( ,  ,  ,  )v w S S S S Sϕ =

, 1 6 1 0 1( ,  ,  ,  )v w S S S S Sϕ =

3 2V V≥

4 4

1 1
0,  0,  ( 1, 2,3, 4); 1,  1i i i i

i i
V W i V W

= =

≥ ≥ = = =∑ ∑
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	 1) Select an initial solution X0 . Set the temperature T0 = 
γF(X 0).

	 2) Repeat the following steps r times:

a) Generate a random move. Each element in the vector has 
probability p unchanged and probability 1-p replaced by a new 
random value.

b) Calculate the objective value of the new vector X.

c) Update the current configuration to the new vector X if a bet-
ter objective value is found.

d) Otherwise, let ∆F denote the increase in the value of the ob-
jective function. Update the current configuration to the new 
vector X with probability p1 = exp(∆F / T). Keep the current con-
figuration with probability 1 − p1.

	 3) Reduce the temperature by multiplying the time re-
duction parameter β.

	 4) Terminate when an optimum value is obtained or the 
objective value cannot get improved after certain number of tem-
perature changes.

	 In order to find a feasible solution weights, we set the 
objective function as follows.

	 In Equation (5.2), u is the utility for evaluation rank, 
which is set as u(si) = i for symmetric and even linguistic term set. 
For asymmetric terms set, u is set according to [26].

obtain exact optimal solutions. Therefore, in this paper, we pro-
pose a meta-heuristic approach, simulated annealing [13], to gen-
erate feasible solutions and then optimize heuristically.

	 We notice in a standard simulated annealing algorithm, 
a random move on the weight element wi may dramatically 
change the whole weight vector (w1, w2,...,wn), and therefore we 
apply the following customized procedure to keep some charac-
teristics of the weight vector unchanged when implementing a 
random move. We select a non-zero wj , say, the first one greater 
than 0.2 in our example, and keep each wi  / wj   for i ≠ j unchanged 
with probability p and change it to max {wi  / wj + uniform(−1,1),0} 
with probability 1-p.

	 Once a (v, w) satisfies F(v, w) = 0, we switch to a pro-
cedure for minimizing another objective function G(v, w). The 
simulated annealing algorithm is the same as the above, except 
that for each random move, F(v, w) is calculated and feasibility is 
kept during the whole second phase.

	 In  this  experiment,  we  set p1 =  0.6, γ1 = 1, β1 = 0.98, r1 
=  20,  v0 = (0.25,0.25,0.25,0.25), w0 = (0.25,0.25,0.25,0.25) in the 
first phase. After 13 temperature changes, a set of feasible weights 
is obtained v = (0.278,0.,0.424,0.298), w = (0.,0.25,0.58,0.17) 

	 The simulated annealing algorithm minimizes the 
non-linear objective function G(v, w) (Eq.(5.1)) from an initial 
vector based on a series of random moves. A group of param-
eters determine how a move is generated, and whether it is ac-
cepted, and how many times moves occur before temperature 
gets changed. Among the parameters, p defines the probability 
used in the generation of a random move. γ determines the initial 
temperature T0  as γF(X 0) where X0 is the initial solution. r refers 
to the number of random moves before temperature is changed. 
β specifies the temperature reduction rate, where 0 < β < 1. The 
simulated annealing algorithm is illustrated as follows.

	 In the second phase, p2 =  0.8, γ2 = 100, β2 = 0.99, r2 
=  40, we can get an optimized solution, v = (0.05,0.,0.95,0.), w 
=(0.,0.025,0.244,0.734)

	 Using these weights, aggregation over a new alternative 
can be processed conveniently.

	 It should be noted that a small learning set leads to a 
large number of feasible weights, and the procedure easily ter-
minates with a solution. While the learning set gets bigger, the 
searching process becomes harder. But the solution obtained 
makes more sense.

	 In this paper, we propose a new method for discover-
ing a mechanism of aggregating linguistic information from a set 
of cases. Two kinds of weights, namely, aggregation weights and 
attributed weights are distinguished. They play key roles in ag-
gregation and can be learned from a learning case set composed 
of alternatives with known aggregation information. Any known 
alternative provides actual comprehensive evaluations, or only 
some order relations between them for example, an alternative 
with attribute performances {a11 = S1, a21 = S5, a31 = S4, a41 = S6} 
will be better than the alternative {a11 = S2, a21 = S4, a31 = S5, a41 = 
S5} as a whole, can be converted into equality or inequality con-
straints.

Conclusion

(5.2)2
, 2 3

1
( , ) ( ( ( ( )) ( ( ))) max{ ,0}

m

v w i i
i

F v w u A c u D c v vϕ
=

= − + −∑
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	 Since the learning set is the foundation of model com-
position and serves as the base of weights discovering, the alter-
natives should be chosen according to typicality and rightness. 
Improper alternatives may result in conflicts among constraints 
and result in the model yielding no solution. Of course, an 
amendment of the model can be a goal for programming with 
only some of the cases satisfying constraints equation. Both some 
constraints and objectives can be assigned by priority parame-
ters. The constraints with more certainty and accuracy should be 
with higher priorities and be satisfied first.

	 Since finding the exact optimal weight solution can be 
very difficult, we present a procedure beginning with search-
ing feasible solution and then optimizing according to the pre-
defined objective function. The simulated annealing algorithm 
is employed because it is not dependent on the initial point and 
shown convergent to the global optimum point. As illustrated 
in an example, the weights obtained using our method are more 
explanatory and meaningful when compared with the weights 
learned from other approaches, such as the traditional ANN.
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