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Abstract

At various stages of the pandemic, finding the impact of COVID-19 on human travel behavior in the city is critical for de-
termining mobility patterns and developing suitable policies. Large-scale New York City taxi data is utilized to characterize 
urban mobility patterns in this paper, which includes a historical record of 124 million taxi medallion rides over approximate-
ly three years (Jan. 2019–Aug. 2021). To measure the correlation between different COVID-19 stages (e.g., pre-COVID-19, 
COVID-19 outbreak, COVID-19 recovery) and trip patterns, two quantitative indices are introduced. The spatiotemporal 
distribution of trip demand, such as the origin, destination, and origin-destination (OD) pairs, is considerably affected, ac-
cording to preliminary findings. Further, important considerations toward the number of confirmed cases and death toll are 
discussed to explore the correlation between trip patterns (e.g., trip distance, trip duration, and group travel) and COVID-19, 
which might help to percept the changes in trip behavior and develop effective management policies during and after the 
pandemic.
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Introduction

	 The World Health Organization (WHO) has classified 
COVID-19 as a global pandemic due to its rapid spread around 
the world [1]. Since the outbreak of the global pandemic, trans-
portation, and other industries have been hard hit, affecting 
people’s daily travel behavior and mobility patterns. WHO is-
sued basic hygiene guidelines to limit the spread of COVID-19, 
such as wearing masks, avoiding crowded places, and frequent-
ly washing hands, to reduce the virus’s influence. Furthermore, 
the most effective strategy is to maintain a safe social distance 
and take fewer outdoor trips, particularly to avoid contact with 
the infected person. Road transport and public transportation 
are improved in this situation when compared to the normal 
transport situation [2]. With the pandemic outbreak, changes 
in urban traffic can be further classified into three phases: pre-
COVID-19, COVID-19 outbreak, and COVID-19 recovery. Per-
ceptions of the spatiotemporal characteristics of urban traffic at 
various stages aid in understanding the impact of COVID-19 on 
travel behavior and developing relevant policies for traffic service 
and epidemic prevention.

	 In general, studies of residents’ travel behavior analysis 
are primarily accomplished through household surveys, which 
are extremely time-consuming in terms of data collection. How-
ever, it is difficult to observe the travel behavior of urban residents 
on a large scale and over a long period of time due to the low 
sampling rate, high cost, and poor timeliness of survey methods. 
With the rapid development of information technology and mo-
bile internet in recent years, an increasing number of new means 
(such as vehicle GPS, social networking sites, smart cards, and so 
on) can help to record the long-term activity trajectory of urban 
residents. Jiang et al. [5] examined GPS data from taxis in sev-
eral Swedish cities and discovered that the riding distance of taxi 
passengers followed a two-stage power-law distribution. Based 
on larger-scale GPS data, Liang et al. [6] investigated the ride 
distance distribution characteristics of taxi passengers and dis-
covered that the ride distance obeyed the exponential distribu-
tion rather than the previously reported power-law distribution. 
People’s daily travel patterns, such as trip demand, trip distance, 
and trip duration, have changed throughout the pandemic. We 
can mine the travel characteristics of different stages within the 
epidemic and efficiently percept the crowding regions using mo-
bility data [7].

	 People’s travel behavior is greatly influenced by the 
spread of infectious diseases. Some post-policy measures, such 

as forced blockade, can typically reduce outdoor activities. As 
a result, the number of people using public transportation has 
dropped dramatically. In many European countries, public trans-
portation lost more than 80% of its passengers in the early stages 
of the pandemic [8]. According to taxi data collected in Chica-
go, the number of taxi passengers was reduced by 95%, and taxi 
operations were reduced by 85 percent, as a result of the United 
States’ “Stay at Home Order” issued in March 2020 [9]. Accord-
ing to taxi trip data from Shenzhen, China, taxi demand in Shen-
zhen decreased by more than 85% during the blockade stage 
[10]. Travelers prefer relatively uncrowded modes of transpor-
tation, such as a private car or taxi transport, for safety reasons 
and fear of infection, even during the recovery stage, while few 
use public transportation. According to an IBM survey of adults 
in the United States, travelers’ attitudes toward public transporta-
tion have shifted significantly. More than 20% of respondents said 
they no longer use the bus, subway, or train, and another 28% said 
they may reduce their use. More than half of those polled said 
they would cut back on carpooling, and 24% said they would no 
longer use taxis for long-distance travel [11]. Willberg et al. [12] 
investigated urban-rural mobility and the impact of multi-local 
living on population dynamics in Finland during the COVID-19 
crisis using three mobile phone datasets. The findings revealed 
a significant decrease in urban mobility and an increase in ru-
ral population. Some COVID-19 mitigation measures, such as 
national border closures, impacted transnational people who 
frequently cross borders for work, shopping, and other purpos-
es. Järv et al. [13] investigated the impact of the COVID-19 pan-
demic on people’s daily lives from the standpoint of transnational 
people. International people’s daily spatial mobility decreased 
sharply, but as restrictions were gradually eased, they began to 
flock to their second homes.

	 On the one hand, the spread of COVID-19 has an im-
pact on people’s travel behavior at various stages. People’s trip 
demand, for example, is significantly reduced when an epidemic 
breaks out. However, as the epidemic recovers, more trips emerge. 
On the other hand, perception of residents’ travel patterns can 
aid in the prediction of the spread of infectious diseases. The use 
of public transportation, train travel, and air travel will acceler-
ate the spread of the virus, while appropriate travel restrictions 
and social distance measures will slow its spread [14]. Previous 
research has shown that people’s travel habits can influence the 
spread of COVID-19. It has been discovered that there is a link 
between population flow patterns and virus transmission in Chi-
na, which has spread more rapidly as a result of increased global-
ization. According to research, China’s strict control measures 
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have significantly slowed the spread of the pandemic [15, 16]. 
Similar findings are proposed, and it is discovered that the main 
reason for the virus’s rapid spread is the large number of passen-
gers entering and leaving Wuhan during the Spring Festival [17]. 
Meanwhile, for the higher/lower infection risk, it is necessary to 
tighten/loosen restrictions on residents’ travel.

	 Relevant studies on historical epidemics can inform the 
travel pattern analysis under COVID-19. MERS-CoV emerged 
in 2012 and has spread to more than 26 countries. To date, all 
reported cases have either occurred in the Middle East or have 
been associated with the region through passenger air trav-
el, with the largest outbreak occurring in South Korea [18, 19]. 
Gardner et al. [20] adopted a transportation network modeling 
framework to quantify the risk of international transmission of 
MERS-CoV through air travelers. Considering the transmission 
routes, the countries with the highest input risk of MERS-CoV 
were identified. The result shows that this study provides a risk 
analysis approach by using travel patterns to prioritize countries 
with the highest risk of MERS-CoV importation, which requires 
good case surveillance at airports to stop outbreaks in the coun-
try. Some studies focus on examining the impact of public fear of 
epidemics on travel behavior. Kim et al. [21] studied the public 
fear caused by the MERS outbreak in South Korea, which led to 
a significant decrease in public transportation use in the Seoul 
Metropolitan Area. Smart card data were used for the analysis, 
and the results showed that subway use was much more affected 
than bus use. The number of people at subway stations is higher 
than that at bus stops, and people may suspect a higher risk of 
infection at subway stations. Goubar et al. [22] developed a mod-
el to estimate the number of SARS cases entered between regions 
and applied the model to two scenarios: from Beijing to Frankfurt 
and from Hong Kong to London. The experimental results are con-
sistent with the observations in real-world cases. Al-Tawfiq et al. 

[23] suggested that frequent travel mobility increases the rate of 
transmission of SARS and MERS-CoV. For travelers, attention 
needs to be paid to their travel history. If there is an infection, 
finding the exact transmission route is critical to subsequently 
prevent the virus from entering the human population. Cohen 
et al. [24] provided some measures to prevent the international 
spread of Ebola. International travel restrictions and border clo-
sure policies play an important role in slowing the spread of 
deadly infectious diseases [25].

	 Although there have been numerous studies on the ef-
fects of COVID-19 on city trip patterns, previous research has 
primarily focused on the impact of trip demand. The goal of this 
study is to investigate the city’s trip patterns at various stages of 
the pandemic. Based on taxi trip data collected in New York City 
(NYC) over the last three years, we examine changes in the spatio-
temporal characteristics of taxi trips during the pre-COVID-19 
period, the COVID-19 outbreak period, and the COVID-19 
recovery stage. There is also research into quantitative measure-
ments of the correlation between trip patterns and COVID-19.

Data description

	 For this study, there are two data sources including taxi 
trip data and COVID-19 data of NYC, USA. The taxi trip data over 
an almost three-year period (Jan. 2019–Aug. 2021) (data source: 
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page) 
are used to analyze the trip patterns in the city. This data covers 
six counties in NYC including Manhattan, Queens, Brooklyn, 
Bronx, EWR, and Staten Island as shown in Figure 1. The key 
taxi trip data typically includes the start and end geocoordinates 
(latitude and longitude), the start and end timestamps, trip dis-
tance, passenger count, and other information. After cleaning the 
data, we have approximately 124 million valid taxi rides.

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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	 In addition, to analyze the effects of COVID-19 on trip 
patterns, we use NYC covid data, which reported the number of 
confirmed COVID-19 cases, the death toll, and the death rate 
for each day of 2020 (data source: https://github.com/nytimes/
COVID-19-data).

Quantitative measurements for the influence of 
COVID-19

Similarity measurement with dynamic time warping distance

	 To investigate the influence of COVID-19 on the tem-
poral trip patterns, it is necessary to analyze the similarity for 
two given time series. Dynamic Time Warping distance (DTW) 
is first proposed to measure the similarity of two-time series by 
Giorgino in 2009 [26]. It not only overcomes the limitation of 
point-to-point matching in the calculation of Euclidean distance 
but also achieves the metric of unequal time series, which means 
the distance between two-time series can be calculated even if 
their lengths differ [27].

	 To analyze the similarity of two temporal trip demand 
time series at different stages of COVID-19, the DTW algorithm 
is used in this paper. Here, we define two- time series based on 
the taxi data of NYC. The hourly taxi trip demand in the T month 
and 𝑇′ month is 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑖, … , 𝑠𝑛} and 𝑄 = {𝑞1, 𝑞2, … 
, 𝑞𝑗, … , 𝑞𝑚} , respectively. We first arrange the series S and Q 
to form an n × m distance matrix where each grid point d(i, j) is 
calculated by Equation (1), 

where d(i, j) is the distance  between two time-series elements 
si and qj, i = 1, 2 … , n， j = 1, 2, … , m. In general, two 
measures are usually used for a distance function d(i, j), which 
is the Manhattan distance with the w = 1 and the Euclidean 
distance with the w = 2. To calculate the DTW of time series 
s and Q, an optimal sequence P is obtained with Equation (2), 
which formulates the DTW(S, Q) as a dynamic programming 
problem, so that the cumulative distance values of time series
S and Q can be minimized.

	 where P is a sequence of time-series elements, where 
each si corresponds to the matching relationship between pk 
and qj . There exist multiple time-warping paths, and the path P 
should satisfy the three requirements given below.
• The boundedness constrain: P1 = (1,1), Pk = (n, m)
• The monotonicity constrain: given PK = (i, j) and Pk+1 = (i’, j’) 
, the i’ ≥ i  and j’ ≥ j exist.
• The continuity constrain: given Pk = (i, j) and Pk+1 = (i’, j’), the 
i’ ≤ i + 1 and j’ ≤ j + 1 exist.

	 The boundedness constrain ensures that the starting 
point is P1 = (1,1) and the ending point is pk = (n, m), which lies 
at the lower left and upper right corners of the distance matrix 

Figure 1: New York City, the study area

(1)

(2)

https://github.com/nytimes/COVID-19-data
https://github.com/nytimes/COVID-19-data
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dn×m in Figure 2. The monotonicity and continuity constraints 
describe that to obtain a minimum cumulative distance, the time 
series can be warped to the next time point. For example, the 
grid point (si−1, qj−1) can be warped to (si, qj−1), (si−1, qj), (si, qj) to 
compute each distance [19]. Among the valid paths, the optimal 
path is found such that the cumulative distance is minimized, as 
in Equation (3). 

	 Equation (3) can be solved with a dynamic program-
ming method. Figure 2 illustrates the process of the calculation 
of DTW. The starting point of sequence P is (𝑠0, 𝑡0) while the 
ending point is (𝑠𝑚, 𝑡𝑛). The blue line 𝑑(𝑆, 𝑄) is the DTW distance 
between the two temporal trip demand series S and Q. 

	 In the COVID-19 data of NYC, the daily confirmed cas-
es and the death toll series are defined as 𝑋𝑐 and 𝑋𝑑. Besides, in 
the NYC taxi data, the corresponding series of trip demand, trip 
distance, trip duration, and the number of grouped passengers 
are 𝑌𝑎, 𝑌𝑑, 𝑌𝑢, 𝑌𝑝. To study the relationship between the number 
of confirmed cases and taxi travel patterns during the COVID-19 
pandemic, the Pearson coefficient 𝜌(𝑋𝑐, 𝑌𝑎), is used to calculate 
the correlation daily confirmed cases series 𝑋𝑐 and trip demand 
series 𝑌𝑎, in Equation (4) [28]. To explore the corresponding 
relationships at different stages of COVID-19 with different 
variables, a similar process can be applied for obtaining the 
Pearson’s	correlation coefficient such	 as 𝜌(𝑋𝑐, 𝑌𝑑), 𝜌(𝑋𝑐, 𝑌𝑢), 𝜌(𝑋𝑐, 
𝑌𝑝), 𝜌(𝑋𝑑, 𝑌𝑎),  𝜌(𝑋𝑑, 𝑌𝑑), 𝜌(𝑋𝑑, 𝑌𝑢)  and  𝜌(𝑋𝑑, 𝑌𝑝).

In Equation (4), m is the length of the daily trip demand series, 
Xc is the average of daily infected people, Ya is the average value of 
daily trip demand. The Pearson’s correlation coefficient not only 
states the presence or the absence of the correlation between the 
two variables but also determines the exact extent to which those 
variables are correlated. The coefficient ranges from the value +1 
to the value -1. It indicates a negative relationship with P < 0 
while a positive relationship with P > 0 . If the correlation coeffi-
cient P is equal to 0, it indicates no relationship between the two 
variables.

Results and analysis

Temporal taxi trip amount during COVID-19

	 We present the number of new confirmed cases and 
deaths per day in NYC based on data from the United States 
COVID-19 report. Figure 3 depicts the epidemic situation in 
NYC in 2020, including the number of confirmed cases, death 
toll, and death rate. Figure 3(a) shows that the number of con-
firmed cases increased from March to April of 2020 and from 
November to December of 2020. Although the number of con-
firmed cases increases from May to October 2020, the rate of 
growth is much slower. Figure 3(b) depicts the death toll from the 
2020 epidemic in NYC, which begins to rise in April and contin-
ues to rise from May to November, albeit at a significantly higher 
rate from November to December. Figure 3(c) depicts the death 

(3)

Figure 2: Example of DTW

Correlation measurement of COVID-19 and city trip

	 The spread of COVID-19 alters people’s travel patterns, 
which vary depending on the stage of the pandemic. During a 
COVID-19 outbreak, mandatory lockdown policies and the fear 
of infection usually cause changes in people’s travel patterns. The 
number of trips and long-distance trips increases as the infection 
rate slows down since people are vaccinated [12]. The COVID-19 
virus, on the other hand, can mutate, and the impact on travel pat-
terns changes as the number of confirmed cases and death rate 
rises. As a result, it is necessary to investigate the relationship 
between the various stages of COVID-19 and trip patterns.

(4)
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rate of infected people in NYC. It can be seen that the rate in-
creased rapidly after April 2020 and then began to fall, with the 
highest infection death rate reaching around 8%.

the first case in Figure 4. From April to August 2020, daily taxi 
demand falls below 5,000 rides, a drop of more than 75% com-
pared to the pre-first-case scenario. Though the number of trips 
has gradually increased since September 2020, the rate of increase 
has remained relatively slow. The year 2021 was still plagued by 
COVID-19, but due to the gradual normalization of the epidem-
ic and an increase in population vaccinations, demand has begun 
to recover, though it remains low when compared to daily rides 
in previous years in history. 

Figure 3: COVID-19 report data in NYC (a) Number of confirmed cases per day; (b) Death toll per day; (c) 
Death rate per day

	 Figure 4 depicts the number of taxi rides in NYC per day 
in 2019, 2020, and 2021. The trip demand in 2019 is relatively 
stable, but it is slightly lower in July and August. The first case of 
COVID-19 reported in the United States appears on January 21st, 
2020, but there are no new cases in NYC from January to March 
2020. As a result, demand has not been affected, with approxi-
mately 200,000 rides per day stashed. On March 1st, 2020, the first 
confirmed case of COVID-19 was reported in NYC. And, pre-
dictably, taxi demand has declined sharply since the emergence of 

Figure 4: Daily taxi trips of NYC in 2019, 2020, and 2021

Spatial mobility patterns during COVID-19

The taxi travel records from January 2020 (pre-COVID-19), April 
2020 (COVID- 19 outbreak period), and July 2020 (COVID-19 
recovery stage) have been selected separately to study the spa-
tial distributions of taxi pick-up and drop-off demand, as shown 
in Figure 5. In January 2020, the hotspots for taxi pick-ups are 
crowded around Manhattan and Queens county, with 484,982 
trips recorded in the Upper East Side South area and 369,546 
trips recorded in the JFK Airport area of Queens, as shown in 

Figure 5 (a). As illustrated in Figure 5 (b), the hotspot for taxi 
pick-ups in April 2020 is reduced to the Manhattan neighbor-
hood alone, and trip demand in the Upper East Side North area 
is 15,576, which is 96.79 percent lower than the situation in Jan-
uary. During the epidemic’s recovery stage, which begins in July 
2020, taxi demand in NYC gradually increases. The taxi pick-up 
hotspots have been returned to two busy districts, namely Man-
hattan and Queens. Figure 5(c) shows that in the Upper East Side 
South area of Manhattan, 57,372 rides are recorded in July, which 
is approximately 3.68 times more than in April. 
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The spatial distribution of taxi drop-off demand in NYC is de-
picted in Figures 5(d) to 5(f). Taxi travel hotspots will be distrib-
uted in Manhattan and Queens in January 2020. In April 2020, 
the taxi hotspots are only concentrated in the Manhattan block, 

where demand is significantly reduced. However, during the epi-
demic recovery stage, which begins in July 2020, the drop-off de-
mand and number of hotspots gradually increased. 

Figure 5: Spatial distribution of taxi trip demand in NYC. (a) Pick-up demand in January 2020; (b) Pick-up in April 2020; (c) Pick-up in 
July 2020; (d) Drop-off demand in January 2020; (e) Drop-off demand in April 2020; (f) Drop-off demand in July 2020

Figure 6: Spatial distribution of the trip demand gap in NYC (a) January 2020; (b) April 2020; (c) July 2020

	 Figure 6 depicts the trip demand gap for each region 
at various stages of the epidemic, which is the difference 
between pick-up and drop-off demand. In January 2020, there 
is a significant demand gap for taxis in NYC, particularly in 
Manhattan, Queens, and Brooklyn as shown in Figure 6(a). On the 
contrary, the number of taxi trips decreases in April 2020, and the 
demand gap between pick-up and drop-off demand is relatively 
small. During the epidemic's recovery stage, the demand gap 
widens, particularly at JFK Airport in Queens County. The inflow 
demand is far greater than the outflow demand, indicating that 

more and more people are flocking to NYC during the recovery 
stage of COVID-19.

	 Every taxi trip has an origin and a destination, and we use 
this information to create origin-destination (OD) pairs to study 
trip distribution in NYC. Figure 7 depicts the geographic dis-
tribution of taxi origin-destination trips during the epidemic’s 
various stages. Figure 7(a) shows that before the epidemic, OD 
trips were widely distributed across different regions, such as in-
tra-city and inter-city trips in Manhattan county, Queens county, 
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Brooklyn county, and Bronx county. These districts are densely 
populated commercial and industrial hubs. The total number of 
trips starting from the Manhattan block is 5,854,937. There are 
5,588,813 orders with origins and destinations all in the Manhat-
tan block, accounting for 95.45 percent of them. Furthermore, 
there are 213,382 orders from Manhattan block to Queens block, 
accounting for 3.64 percent of total orders. As shown in Figure 
7(b), when the epidemic occurred in March 2020, the OD distri-
bution of taxi orders generated more trips within the Manhattan 
block and fewer trips to other farther blocks. There are 205,694 
orders with origins and destinations in Manhattan block and 

only 3,308 orders with origins and destinations in Queens block. 
Figure 7(c) depicts the OD distribution of taxis in July 2020, 
during the epidemic’s recovery stage. The number of taxi orders 
grew gradually. In July, 706,145 orders left Manhattan block, with 
672,012 orders arriving at Manhattan block. During the epidem-
ic’s recovery stage, the majority of orders continue to emerge in 
the Manhattan block, but orders to other blocks are gradually 
increasing. 

Figure 7: Geographic distribution of taxi origin-destination trips in NYC (a) January 2020; (b) April 2020; (c) July 2020

The influence of COVID-19 on group travel behavior

	 The number of passengers for each trip is recorded in 
the taxi data. In this section, we examine the changes in group 
travel behavior in NYC at various stages of the epidemic. Group 
travel behavior is defined as two or more people traveling togeth-
er on purpose during (part of) a trip [29]. The group travel rate 
is calculated by dividing the number of group travel trips by the 
total number of trips. Figure 8 depicts the number of group travel 
trips and the group travel rate during the epidemic. The number 
of group travel orders in 2019 is relatively stable, with a slight de-

crease in July and August. With an average of 6,728 orders per 
day in 2020, a large number of group travel trips exit before the 
epidemic. The COVID-19 outbreak has sharply reduced the num-
ber of group travel orders, with only an average of 134 orders per 
day. During the epidemic’s recovery stage, the number of group 
travel orders steadily increased to an average of 1,378 orders per 
day in December. It can be seen that the rate of group travel has 
also changed before and after the pandemic outbreak. Overall, 
the group travel rate decreases in the early stages of the epidemic 
and then gradually increases during the recovery stage, but the 
value of the companion rate remains lower than before the epi-
demic.
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	 The OD distribution of group travel orders at various 
stages of the epidemic is shown in Figure 9. Before the pandem-
ic, many group travel orders are widely distributed in Manhat-
tan, Queens, Brooklyn, and the Bronx, but the majority of them 
vanished with the outbreak of COVID-19. When the pandemic 
has recovered to some extent, group travel behaviors will become 
more visible.

COVID-19 impacts on the trip distribution

	 We examine the trip distributions of taxi passengers at 
different phases of COVID- 19, including the trip distance, trip 
duration, and trip speed. Here the power-law distribution, pow-
er law with an exponential cutoff, log-normal distribution, and 
exponential distribution are chosen as candidates to fit the travel 
distribution [17].

	 The power law that follows a distribution with exponent 
𝛽 is shown in Equation (5).

The power-law distribution with exponential cutoff is defined in 
Equation (6), where 𝛽 is the exponent and 𝜅 is the cutoff value

	 The probability density function of the log-normal dis-
tribution is in Equation (7), where 𝜇 and 𝜎 denote the mean 
and standard deviation of the natural logarithm of the variable.

	 The probability density function of the exponential dis-
tribution is in Equation (8), and b is the rate parameter.

	 Logarithmic binning has been proposed as a useful 
technique for reducing statistical errors in the tails of empiri-
cal power-law-like distributions [17]. Figure 10 depicts the taxi 
trip distribution and group travel distribution using a double-log 
plot. The trip distance distribution in April 2020 is depicted in 
Figure 10 (a). A peak appears in the purple circle after a trip dis-

Figure 8: Group travel characteristics in 2019, 2020, and 2021 for NYC taxi trip data (a) number of trips in the group 
travel; (b) group travel rate

Figure 9: Geographic distribution of group travel for NYC taxi trip data (a) January 2020; (b) April 2020; (c) July 2020

(5)

(6)

(7)

(8)
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tance of 11km, indicating that people use taxis for commuting. 
As shown in Figure 10 (b), this peak became less visible in April 
2020, indicating that the few people commuting by taxi during 
the epidemic. We use three distribution functions to fit the taxi 
trip distance distribution, namely power-law distribution with 
exponential truncation (PLEXP), lognormal distribution (LN), 
and exponential distribution (EXP), in Equations. (5) - (8). 
When compared to the lognormal distribution (LN) and the 
exponential distribution (EXP), the power distribution with ex-
ponential truncation (PLEXP) fits the trip distance distributions 
better.

	 Figure 10 (d)-(f) depicts the trip duration distribution 
at various stages of the COVID-19. The exponential distribution 
(EXP) can better fit the taxi travel time distribution in January 
2020 (before the epidemic). Due to the trip duration disturbance, 
the fitting effect is not as good as it was before the epidemic out-
break (in April 2020). The trip duration gradually becomes sta-
ble during the recovery stage (in July 2020), and the exponen-
tial distribution (EXP) can fit the taxi travel time distribution well 
again. 

Figure 10: Taxi trip distribution and group travel distribution at various stages during the pandemic
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	 Based on the trip distance and duration in each taxi 
travel record, the trip speed can be calculated. In Figure 11, we 
examine daily speeds in 2019 and 2020 during peak and off-peak 
hours. In general, trip speeds are faster during off-peak hours 
than during peak hours of 7:00-9:00 and 17:00-1900. In 2019, taxi 
trip speeds change steadily, and the average trip speeds in peak 

hours are much lower than that in non-peak hours. Because 
there were fewer trip demands and nearly no traffic congestion 
on the road when the virus broke out in 2020, taxis’ peak and off-
peak speeds dramatically soared. With the recovery of taxi trips 
on the road during July 2020, the driving speed gradually decrease 
but remains higher than in the same period in 2019. 

Figure 11: Peak hour speed and off-peak hour speed of NYC taxi trips in 2019 and 2020

Similarities in trip demand estimation during COVID-19

	 The DTW distance is used to examine the similarity of 
taxi demand. The time series of the DTW distance of the taxi trip 
demand series in 2020 is shown in Figure 12(a). We can see that 
the DTW distance of taxi trip demand between January and Feb-
ruary is 3.6, which is minimal and shows a high degree of simi-
larity. Taxi trip demand begins to fall in March 2020 as a result of 
COVID-19, and their DTW distance gradually increases. Between 
January and March, the DTW distance of taxi trip demand is 33, 
while between January and April, it is 62. In January and April, 
the large value of DTW distance demonstrates the differing travel 
patterns. The DTW distance reduces during the epidemic’s re-
covery stage, indicating that close similarity is approaching. For 

example, between January and October, the DTW distance of 
taxi trip demand is 47 miles. As a result, the DTW distance can 
accurately represent and convey the similarity of the monthly 
trip demand time series.

	 Figure 12(b) depicts the DTW distance of taxi trip de-
mand from 2019 to 2021. We can see that COVID-19 has no effect 
on taxi trip demand in 2019. The DTW distance between each 
month is minimal, indicating the high similarity of travel pat-
terns. Trip demand swings dramatically in March 2020 as a result 
of COVID-19, and the DTW distance is greater than in previous 
months. Taxi trip demand progressively improves in 2021, and 
taxi trip travel patterns become similar. 

Figure 12: DTW distance of taxi trip demand at various stages of COVID-19
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Correlation analysis of COVID-19 and city trip

	 The research focused on studying the correlation anal-
ysis between different COVID-19 stages and trip patterns. The 
analysis of the travel demand at various stages of COVID-19 is 
as follows. Before the outbreak of COVID-19, the average daily 
travel demand is 208,296.56 in Jan.-Feb. In Mar. and Apr., the 
outbreak of COVID-19 decreases the daily travel demand by 
74.92%, with an average of 52,242.18 trips per day. In May. and 
Jun., the COVID-19 continues to spread and the number of in-
fected people increased dramatically, which reduces the daily 
travel demand by 93.20% compared to the daily travel demand 
before the COVID-19. The average number of trips from Jul. to 
Aug. is 28,102.69, with a 1.98 times increase compared to that in 
May. and Jun. The average daily travel demand is 48,263.14 in 
Sep.-Oct. and 47,615.39 in Nov. and Dec., respectively. Although 
the number of infected people continued to increase, the number 

of trips become stable. The impact of the COVID-19 on people’s 
daily travel is not as great as when the epidemic first occurred. The 
average trip duration is 12.86 minutes in Jan. and Feb. before the 
COVID-19 outbreak, while reduces to 10.32 minutes in Mar. and 
Apr. during the outbreak. It can be seen that the impact of the 
COVID-19 has reduced the trip duration by taxi. The average 
trip duration in Jul. and Aug. is 11.83 minutes and 12.15 minutes 
in Sep. and Oct. Longer travel duration appears during the re-
covery period of the epidemic. Besides, the average travel distance 
is 2.92 km before the COVID-19 outbreak. The average travel 
distance is 3.08 km in Jul. and Aug. and 3.69 km in Sep. and Oct. 
During the epidemic, the number of short- distance trips by taxi 
decreases, which is substituted by the use of bicycles or walking. 
For longer trips, for example, over 3 km, people are more likely to 
choose taxis, which is less likely to be infected compared to using 
the bus and subway. 

Index Jan.-Feb. Mar.- Apr. May.-Jun. Jul.- Aug. Sep.- Oct. Nov.-Dec.

Cases 0 111376.29 368972.00 419667.08 469230.55 694495.23

Deaths 0 7100.67 29058.42 32273.06 32804.72 34637.30

Daily average trip 
demand

208296.56 52242.18 14155.90 28102.69 48263.14 47615.39

Daily average trip 
duration (min)

12.86 10.32 11.66 11.83 12.15 11.94

Daily average trip 
distance (km)

2.92 3.08 3.69 3.25 2.85 2.80

Average passenger 
count

1.51 1.35 1.34 1.40 1.43 1.42

𝜌(Cases, Demand) - -0.59 0.67 0.61 0.57 -0.34

𝜌(Deaths, Demand) - -0.50 0.64 0.59 0.58 -0.35

𝜌(Cases, Duration) - -0.49 0.15 0.16 0.02 0.01

𝜌(Deaths, Duration) - -0.38 0.17 0.12 0.03 0.02

𝜌(Cases, Distance) - 0.31 -0.48 -0.26 -0.41 0.25

𝜌(Deaths, Distance) - 0.31 -0.44 -0.30 -0.42 0.29

𝜌(Cases, Passenger) - -0.59 0.73 0.52 0.09 0.18

𝜌(Deaths, Passenger) - -0.48 0.69 0.43 0.07 0.19

Table 1: Result of Pearson correlation test at various stages of COVID-19 in 2021

	 Table 1 shows the results of a Pearson correlation test 
between characteristics linked to taxi travel and the number of 
verified COVID-19 cases/deaths. Figure 13 shows the related 
combined distributions of relative variables. The Pearson cor-
relation coefficient between the number of confirmed cases and 
taxi trip demand is 𝜌(Cases, Demand). 𝜌(Cases, Demand) is 

-0.59 when COVID-19 is released in March 2020, indicating a 
negative association between the number of confirmed cases and 
taxi trip demand. This negative figure indicates that as the num-
ber of verified cases of COVID- 19 rises, so does the demand for 
taxi rides. 𝜌(Cases, Duration) represents the Pearson correlation 
coefficient between the number of confirmed cases and the trip 
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distance of taxi trips.  𝜌(Cases, Duration) is -0.49 with the data 
from March to April, indicating that an increase of confirmed cas-
es causes the reduced trip duration. 𝜌(Cases, Distance) denotes 
the Pearson correlation coefficient between the number of con-
firmed cases and the trip distance of taxi trips. 𝜌(Cases, Distance) 
is 0.31 during March to April, which means when the average trip 
distance is longer, the number of confirmed cases is high accord-
ingly. 𝜌(Cases, Passenger) is the Pearson correlation coefficient 
between the number of confirmed cases and the average pas-

senger count. 𝜌(Cases, Passenger) is - 0.59 shows that a small 
number of passengers travel with more confirmed cases. The as-
sociations between characteristics connected to taxi travel and 
the number of confirmed cases/deaths are never fixed during 
successive stages of COVID-19. For example, 𝜌(Cases, Demand) 
is 0.37 from July to August 2020. The number of confirmed cases 
continues to rise, resulting in more taxi rides. Because the prev-
alence of infection declines and more individuals are vaccinated, 
the total number of trips and long-distance trips increases. 

Figure 13: Correlation analysis of confirmed cases and taxi trip characteristics. (a) trip demand; (b) trip distance; (c) trip duration

Conclusion

	 Since the outbreak of the COVID-19 global pandem-
ic, transportation, and many other industries have been severely 
impacted. The spread of the epidemic influences people’s trav-
el behavior, which varies dynamically at various stages of the 
COVID-19. Trip demand is significantly reduced at the start 
of the outbreak. However, as the infection rate has slowed and 
more people have been vaccinated, trip demand has gradually 
increased. Based on taxi records in NYC from 2019 to 2021, this 
study aims to investigate travel behavior at various stages 
of the pandemic and analyze the following components be-
fore, during, and after the COVID-19 pandemic. 1) changes in 
the spatiotemporal characteristics of taxi mobility, 2) changes in 
taxi travel companion behavior, i.e., to travel with someone, 3) 
the distribution of taxi travel characteristics, and 4) the impact 
of the COVID-19 pandemic on travel characteristics. As a result, 
demand for taxi rides in NYC drops by more than 75% during the 
outbreak. Although the figure has gradually increased during the 
recovery stage, it is still difficult to return to pre-epidemic levels. 

From a spatial standpoint, the number of travel hotspots has de-
creased since the outbreak, and taxi orders are highly concentrat-
ed within specific regions. When it comes to significant changes 
in group travel behavior, most travelers prefer to travel alone, re-
sulting in a downward trend in the proportion of travelers trav-
eling with companions. The DTW distance is used to investigate 
the similarity of trip demands at various stages, and the analy-
sis reveals that it can dynamically reflect the evolution of travel 
characteristics.

	 This work is based on epidemic data and taxi orders 
in NYC, but in future studies, functional characteristics of each 
region can be included to investigate changes in travel purposes 
during the COVID-19. Furthermore, the integration of multiple 
modes of transportation, such as buses and bikes, can be includ-
ed to reflect travel mode choice during the pandemic.
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